DIAGRAMME DE PHASES DU SYSTEME BINAIRE CsNO₃–LiNO₃ Activité des constituants du liquide

N. Bélaïd-Drira, H. Zamali et M. Jemal^{*}

Département de Chimie, Faculté des Sciences de Tunis, Campus Universitaire, 1060 Tunis Tunisie

(Reçu le 8 Novembre 1998)

Abstract

Phase diagram of the binary system $C_{s}NO_{3}$ -LiNO₃ has been drawn by using simultaneously direct and differential thermal analysis between 323 and 723 K. This system is characterized by a congruent intermediate equimolar compound with melting point at 463 K, two eutectic reactions at 447 and 433 K; the eutectic points are respectively at 0,47 and 0,63 mol fraction of LiNO₃; a plateau due to the phase transition of $C_{s}NO_{3}$ at 428 K and an other one at 333 K due to the formation of $C_{s}Li(NO_{3})_{2}$. The miscibility in solid state seems to be nil or negligible. These results associated with some other thermodynamic data have been used to calculate the activities of the constituents along the liquidus curve and the activities of the liquid constituents at 723 K. The binary liquid (Cs–Li)NO₃ exhibits a negative deviation from the ideal behaviour.

Keywords: activities in the liquid, cesium nitrate, excess quantities, lithium nitrate, phase diagram

Introduction

Dans le cadre de l'étude des équilibres entre phases condensées des nitrates de césium, lithium et de sodium, nous avons repris le diagramme de phases du système binaire CsNO₃–LiNO₃ [1]. Ce dernier a déjà fait l'objet de quelques travaux [2–8]. L'un des diagrammes publiés fait apparaître un seul point eutectique (X_{LiNO_3} =0,57; *T*=447 K) [2], un autre donne deux faiseaux à minimum (X_{LiNO_3} =0,57; *T*=463 K) [3] alors que la majorité [4–8] donne deux eutectiques de part et d'autre d'un composé intermédiaire équimolaire à fusion congruente. Cependant, les valeurs des compositions et des températures de ces eutectiques se situent dans des domaines relativement larges. En effet, pour l'eutectique riche en CsNO₃ la composition molaire en LiNO₃ se situe entre 0,41 et 0,46 et la température entre 443 et 456 K; alors que l'eutectique riche en nitrate de lithium se situe entre 0,54 et 0,63 (composition molaire

1418–2874/99/ \$ 5.00 © 1999 Akadémiai Kiadó, Budapest Akadémiai Kiadó, Budapest Kluwer Academic Publishers, Dordrecht

^{*} Author to whom all correspondence should be addressed.

de LiNO₃) pour une température entre 433 et 443 K. Il est donc intéressant de reprendre le tracé du diagramme de phases de ce binaire et de préciser ses invariants. Les résultats concernant le liquidus associés aux mesures des enthalpies de mélange des nitrates à l'état liquide réalisées par Kleppa [9], permettent d'estimer l'activité isotherme des constituants dans le liquide et par suite leurs grandeurs thermodynamiques d'excès dans cette même phase.

Techniques expérimentales

La méthode expérimentale utilisée a été décrite à plusieurs reprises [10–14]. Elle repose sur les techniques d'analyses thermique directe et différentielle simultanées utilisant des creusets en platine. Le dispositif expérimental utilisé a été conçu de façon à avoir un montage aussi symétrique que possible. Les thermocouples utilisés sont du type Chromel Alumel. Leur étalonnage a été vérifié périodiquement à l'aide des nitrates de sodium ou de potassium. La reproductibilité des mesures est de ± 1 K et l'erreur sur la détermination expérimentale des températures de changement de phases est estimée à un degré.

Les mélanges étudiés, de masse voisine de 2 g, ont été préparés à partir des solides $CsNO_3$ et LiNO₃ purs à plus de 99,99% (commercialisés par Aldrich *et Co.*). Ils ont été homogéniésés par fusions répétées en veillant à éviter leur décomposition.

 $\begin{array}{l} \label{eq:Fig. 1} \textbf{Fig. 1} \text{ Diagramme de phases du système (Cs-Li)NO_3 ; o - points obtenus par application de la loi de Raoult, I - liquide ; II - liquide+ \beta_{CsNO_3}; III - liquide+ CsLi(NO_3)_2; \\ IV - liquide+ CsLi(NO_3)_2 ; V - liquide+ LiNO_3 ; VI - \beta_{CsNO_3} + CsLi(NO_3)_2 ; \\ VII - \alpha_{CsNO_3} + CsLi(NO_3)_2; VIII - LiNO_3 + CsLi(NO_3)_2; IX - \alpha_{CsNO_3} + LiNO_3 \end{array}$

J. Therm. Anal. Cal., 58, 1999

608

Chaque échantillon a nécessité au moins trois essais d'analyses thermiques : le premier est toujours réalisé sans traitement thermique préalable et les autres après des recuits à des températures convenablement choisies et pendant des durées variables allant de 24 h (à l'ambiante) à une semaine à des températures inférieures d'environ 10 K à celles des paliers. La vitesse de chauffe est d'environ 0,9 K min⁻¹ pour le premier essai. Elle est réduite à 0,4 K min⁻¹ pour les suivants.

$\begin{array}{cccccccccccccccccccccccccccccccccccc$	X _{LiNO₂}	T_1/K	T_2/K	T_3/K	T_4/K	$T_{\rm cr}/{ m K}$
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	0,00			427		683
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	0,05			427,5		683
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	0,094		334 ; 334,5	428,8 ; 429	448;449	647;655
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	0,10	332		429 ; 429,5	447,2 ; 449	645
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	0,259		338,8 ; 334	428 ; 428,8	445;448	581;582
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	0,278	332,5	332;333,8	428;429	448;449	565,5
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	0,35	332,5	334	428,3 ; 428,8	447;449	511;512.5
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	0,381	331			447,5	497
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	0,40	331 ; 331,5			435;441	487
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	0,45	331;332		428,5	447;449	453
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	0,47	330,5 ; 332		433;437	447;449	447
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	0,497	331		433;438		452;461
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	0,50	330,5 ; 331,5	333,5	439;440		463
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	0,55	327,5 ; 332	333;337	444	450	452,5 ; 453
0,70 332,5 ; 333 334 443,5 458 0,802 331,5 ; 332 437 ; 440,5 495 0,879 330 ; 332 439 ; 439,5 514,7 ; 515 0,90 333 439 522 1,00 527 ; 528	0,63	330;331,5	335	435 ; 435,5		439;441
0,802 331,5 ; 332 437 ; 440,5 495 0,879 330 ; 332 439 ; 439,5 514,7 ; 515 0,90 333 439 522 1,00 527 ; 528	0,70	332,5 ; 333	334		443,5	458
0,879330 ; 332439 ; 439,5514,7 ; 5150,903334395221,00527 ; 528	0,802	331,5 ; 332			437 ; 440,5	495
0,903334395221,00527 ; 528	0,879	330;332			439 ; 439,5	514,7 ; 515
1,00 527 ; 528	0,90	333			439	522
	1,00					527;528

Tableau 1 Température – fraction molaire de LiNO₃

 T_{i} : en montée de température; T_{cr} : en descente de température

Résultats et discussion

L'exploitation des courbes obtenues en montée et en descente de température a permis de collecter les valeurs rassemblées dans le Tableau 1 et de tracer le diagramme de phases représenté sur la Fig. 1. En plus du liquidus, ce diagramme fait apparaître en particulier :

+ un palier à 447±1 K relatif à une première réaction eutectique et se manifestant pour $X_{\text{LiNO}_3} \leq 0,50$. Le point eutectique correspondant a une fraction molaire $X_{\text{LiNO}_3} = 0,47$.

+ un palier à 433±1 K relatif à une deuxième réaction eutectique ayant lieu dans le domaine $0,50 \le X_{\text{LiNO}_3} \le 1$. La composition du point invariant est de $X_{\text{LiNO}_3} = 0,63$.

+ un composé équimolaire intermédiaire à fusion congruente : 463±1 K.

+ un palier à 428±1 K relatif à la transition de phase α/β du nitrate de césium et s'étendant sur tout le domaine de composition $X_{\text{LiNO}} \leq 0,50$.

+ et un palier à 333 ± 1 K s'étendant sur tout le domaine de composition. Par ailleurs, il a été signalé [5–8, 17, 18] que ce système donne lieu à un composé intermédiaire équimolaire à fusion congruente. Les expériences de diffraction de rayon X que nous avons réalisées à l'ambiante sur les nitrates purs et sur les mélanges à 40, 50 et 60% molaire n'ont pas pu mettre en évidence l'existence de ce composé à cette température. Nous avons conclu que ce palier à 333 K est dû à l'apparition de CsLi(NO₃)₂.

Afin d'avoir une meilleure résolution des pics observés en ATD, diverses vitesses lentes ont été utilisées. Toutefois, cette procédure n'a pas permis d'annuler le décalage entre les lignes de base ; de ce fait le tracé des diagrammes de Tammann relatifs aux paliers d'invariance observés n'a pu être obtenu. Cependant, l'allure générale des pics va dans le sens de l'interprétation proposé.

Les températures de fusion, $T_{\rm f}$, de CsNO₃ et de LiNO₃ et de transition de phases solide–solide, $T_{\rm tr}$, de CsNO₃, déterminées au cours de ce travail, sont en accord avec les valeurs publiées récemment [15–18].

MNO ₃	$T_{ m f}/ m K$	Référence	$T_{\rm tr}/{ m K}$	Référence
CaNO	683±1	présent travail	428±1	présent travail
CSNO ₃	679–683	15, 16, 18	425–427	15, 18
LINO	527,5	présent travail		
LINO ₃	526-528	17, 18		

Nos mesures relatives au diagramme de phases infirment certains résultats antérieurs [2, 3] mais confirment partiellement ou précisent certains autres [4–8] : le diagramme obtenu fait apparaître en particulier deux invariants du type eutectique de part et d'autre du composé intermédiaire équimolaire à fusion congruente, toutefois, contrairement à l'ensemble des résultats antérieurs, ce composé n'apparaît pas à la température ambiante mais à partir de 333 ± 1 K.

Le calcul des branches du liquidus du côté des nitrates purs a été réalisé en appliquant la loi de Raoult et en utilisant les enthalpies de fusion des corps purs CsNO₃ (12100 J mol⁻¹ [15]) et LiNO₃ (25563 J mol⁻¹ [17]). Les résultats sont comparés aux valeurs expérimentales (Fig. 1) : la loi de Raoult est vérifiée. La miscibilité réciproque de ces nitrates à l'état solide est donc très faible ou nulle.

Activités des constituants du liquide binaire à 723 K

Si l'on admet qu'à l'état solide, les nitrates de césium et de lithium présentent une miscibilité nulle l'un dans l'autre, la connaissance du liquidus et des grandeurs thermodynamiques des corps purs [15, 17, 19] permet de déduire l'activité de l'un ou l'autre constituant le long de la branche du liquidus pour laquelle le liquide binaire est en équilibre avec le solide supposé pur CsNO₃ ou LiNO₃.

Coefficients d'activité des nitrates de césium et lithium le long du liquidus

L'égalité des potentiels chimiques, à pression constante, appliquée à une température du liquidus, permet de calculer les coefficients d'activité des nitrates de césium γ_1 et lithium γ_2 respectivement pour les domaines de composition molaire en LiNO₃ : 0,0–0,47 et 0,63–1,0. Le Tableau 2 rassemble les résultats obtenus.

	CsNO ₃			LiNO ₃	
$T_{\rm liquidus}/{ m K}$	X_1	γ_1	$T_{ m liquidus}/ m K$	X_2	γ_2
683	1	1	527,5	1	1
663	0,95	0,976	518	0,900	0,999
647	0,906	0,961	515	0,879	0,988
645	0,900	0,959	495	0,802	0,855
581	0,741	0,867	458	0,700	0,609
565,5	0,722	0,820	433	0,630	0,476
512	0,65	0,662			
497	0,619	0,628			
487	0,600	0,604			
453	0,550	0,507			
447	0,530	0,500			

Tableau 2 Coefficients d'activité (γ_i) le long du liquidus

Coefficients d'activité et activités des nitrates de césium et lithium à 723 K

Les coefficients d'activité et par suite les activités des nitrates de césium et de lithium dans le liquide binaire à 723 K, ont été déterminés par intégration de la relation différentielle suivante :

$$\left(\frac{\partial \ln\gamma_1}{\partial(1/T)}\right)_{\rm P,X} = \frac{\Delta_{\rm mix}H_{\rm i,m}}{R}$$
(1)

où $\Delta_{\text{mix}}H_{i,\text{m}}$ est l'enthalpie partielle molaire de mélange du constituant *i* (1=CsNO₃) ou 2=LiNO₃) déduite des résultats de Kleppa [9]. Exprimées en fonction de la fraction molaire du nitrate de lithium, ces enthalpies (en J mol⁻¹) obéissent aux expressions suivantes [9]:

$$\Delta_{\rm mix} H_{\rm m} = -12552X(1-X) \tag{2}$$

$$\Delta_{\rm mix} H_{1,\rm m} = -12552X^2 \tag{2a}$$

$$\Delta_{\rm mix} H_{2,\rm m} = -12552(1-X)^2 \tag{2b}$$

L'enthalpie de mélange des nitrates CsNO₃ et LiNO₃ à l'état liquide est considérée pratiquement indépendante de la température [9, 20]. Le coefficient d'activité du constituant i à une température T, $\gamma_i(T)$, est alors donné par la relation :

$$\ln\gamma_{i}(T) = \frac{\Delta_{\rm mix}H_{\rm i}}{RTT_{\rm L}}(T_{\rm L} - T) + \ln\gamma_{\rm i}(T_{\rm L})$$
⁽³⁾

où $\gamma_i(T_L)$ est la valeur de $\gamma_i(T)$ à la température du liquidus (T_L) pour une composition donnée. Les résultats des calculs de $\gamma_i(T)$ et $a_i(T)$ réalisés pour la température 723 K et les domaines de composition relatifs aux deux branches du liquidus, sont rassemblés dans le Tableau 3.

Coefficients d'activité et activités isothermes (723 K) des nitrates dans tout le domaine de composition

La détermination des coefficients d'activité dans tout le domaine de composition, ne pouvant être réalisée par intégration de la relation de Gibbs-Duhem, nous avons été amenés à considérer une approche basée sur le comportement régulier du liquide binaire. En effet, d'une part les résultats de Kleppa [9] relatifs aux enthalpies de mélange à 723 K ont montré que l'énergie d'échange, W, est constante : $\Delta_{mix}H_m$ =-12552X(1-X) J mol⁻¹. D'autre part, il a été établi que dans le cas des sels fondus, le terme entropique d'excès, $T\Delta_{XS}S$ est d'autant plus faible que la différence entre les rayons des cations est plus grande [20]. Le cas des mélanges CsNO₃-LiNO₃ répond bien à cette condition. On peut donc considérer que le liquide CsNO₃-LiNO₃ a les propriétés des solutions strictement régulières ($T\Delta_{XS}S$ =0). Soit $\Delta_{XS}G_m$ = $\Delta_{mix}H_m$. De ce fait on peut écrire :

$$\Delta_{\rm XS}G_{\rm m} = \Delta_{\rm mix}H_{\rm m} = WX(1-X) = RT[X_1\ln(\gamma_1) + X_2\ln(\gamma_2)].$$

Ainsi, les coefficients d'activité γ_i et les activités des nitrates de césium (a_1) et de lithium (a_2) ont été calculés (Tableau 2). Les variations des activités en fonction de la fraction molaire du nitrate de lithium X_2 sont représentées sur la Fig. 2.

	$CsNO_3$		Lir	VO ₃		$LiNO_3$		Csl	NO_3
X_1	$\gamma_1^{(*)}$	$a_{1}(*)$	γ_2LSR	$a_2 LSR$	X_2	$\gamma_2 (*)$	$a_{2}(*)$	γ_1LSR	a_1 LSR
1	1	1	0	0	1	1	1	0	0
0,95	0.977	0,928	0,215	0,011	0,95	0,992	0,942	0,160	0,008
0,906	0.963	0,872	0,218	0,021	0,900	1,007	0,906	0,143	0,014
0,900	0.961	0,865	0,218	0,022	0,879	1,001	0,880	0,159	0,019
0,741	0,897	0,665	0,290	0,075	0,802	0,888	0,712	0,303	0,060
0,722	0,858	0,619	0,330	0,092	0,700	0,679	0,476	0.571	0, 171
0,650	0,735	0,478	0,455	0,159	0,630	0,577	0,363	0,685	0,253
0,619	0,721	0,446	0,467	0,178					
0,600	0,710	0,426	0,478	0,191					
0,550	0,652	0,359	0,535	0,241					
0,530	0,665	0,352	0,524	0,246					

BELAÏD-DRIRA et al.: SYSTEME CsNO3-LiNO3

J. Therm. Anal. Cal., 58, 1999

613

Fig. 2 Activités des constituants du liquide à 723 K

Conclusion

Les nitrates de césium et de lithium présentent à l'état solide une miscibilité pratiquement nulle l'un dans l'autre et donnent à 333 ± 1 K, un composé équimolaire intermédiaire à fusion congruente 463 ± 1 K. Leur diagramme de phases est caractérisé par deux réactions eutectiques à 433 ± 1 K et 347 ± 1 K. La transition de phase solide–solide α/β du nitrate de césium persiste en présence de LiNO₃ jusqu'à environ 50% molaire.

Les valeurs des activités a_1 et a_2 des constituants dans le liquide, calculées à partir du liquidus et celles déduites de l'hypothèse d'une solution liquide strictement régulière sont dans l'ensemble cohérentes. En plus de la vérification de la loi de Raoult, elles montrent des écarts à l'idéalité négatifs.

Références

- N. Belaïd-Drira, H. Zamali et M. Jemal, XXII^{èmes} Journées d'Etudes des Equilibres entre Phases; 15–16 Avril 1996, La Garde-Toulon, France, 137, 1996.
- 2 N. A. Puschin and M. Radonicic, Z. Anorg. Allgem. Chem., 233 (1937) 41.
- 3 V. P. Blidin, Izv. Sekt. Fiz. Khim. Anal., Inst. Obsch. Neorg. Khim. Akad. Nauk SSSR, 23 (1953) 233.
- 4 P. I. Protsenko and T. I. Fedchenko, Uch. Zap. Rostov-Na-Donu. Gos. Univ., 60 (1959) 135.
- 5 N. N. Nurminskii and G. G. Diogenov, Russ. J. Inorg. Chem., 5 (1960) 1011.
- 6 K. A. Bol'shakov, B. I. Pokrovskii and V. E. Plyushchev, Zh. Neorg. Khim., 6 (1961) 2120.

- 7 P. I. Protsenko, R. P. Shisholina and E. M. Ivanova, Izv. Vyssh. Uchebn. Zaved. Khim. I. Khim. Nauk SSSR, 7 (1964) 180.
- 8 G. Litvinov, Yu. I. I. Il'yasov and V. I. Savva, Zh. Neorg. Khim., 20 (1975) 2560.
- 9 O. J. Kleppa and L. S. Hersh, J. Chem. Phys., 34 (1961) 351.
- 10 H. Zamali, Thèse de Doctorat de spécialité, option chimie, Fac. Sc. Tunis, 1982.
- 11 H. Zamali et M. Jemal, Journées de Montpellier, AFCAT, 20-22 Mai, 16 (1985) 298.
- 12 H. Zamali and M. Jemal, J. Thermal Anal., 41 (1994) 1.
- 13 H. Zamali, Thèse de Doctorat d'Etat en chimie, N° D 194, Fac. Sc. Tunis, 1996.
- 14 N. Belaïd-Drira, H. Zamali et M. Jemal, J. Thermal Anal., 46 (1996) 1449.
- 15 T. Jriri, Thèse de Doctorat de l'Académie d'Aix-Marseille, 1994.
- 16 B. B. Ownes, J. Chem. Phys., 42 (1965) 2259.
- 17 Y. Dessureault, J. Sangster et A. D. Pelton, J. Chim. Phys., 87 (1990) 407.
- 18 N. Mossarello, Thèse d'Université de Provence, 'Aix-Marseille I', 1986.
- 19 K. Ichikawa and T. Matsumoto, Bull. Chem. Soc. Japan, 56 (1983) 2093.
- 20 R. Connan, Rev. Soc. Chim. Mex., 22 (1978) 17.